POLI210: Political Science Research Methods

Lecture 13.2: Linear regression II

Olivier Bergeron-Boutin November 25th, 2021

Boring admin stuff

- · Due dates:
 - · Problem set: December 2nd
 - · Try to knit right now!
 - · Team project: December 6th
 - · Quiz: December 2nd to December 6th no late penalty until the 17th
 - · Will be posted soon
- · Please complete course evals on Minerva

Adding more covariates

As seen repeatedly in the class, correlation \neq causation

- · Why? Because of confounders
- But if we can "adjust" for all relevant confounders ("control" for them)
- · We have a stronger claim to causality
- In addition, from a predictive inference framework, we can make better predictions of the value \boldsymbol{Y} will take on

In our regressions, we will include additional covariates

- Covariates = independent variables = explanatory variables
- · Just to be clear, we keep the same dependent variable
- But now seek to explain it using multiple variables

Our new regression equation

With two independent variables, we now have:

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon_i$$

We still have our intercept, eta_0

- But now we have one coefficient for each independent variable: β_1 and β_2
- · Our interpretation of each coefficient is now a bit different
- β_1 representes the expected change in Y occurring as a result of a one-unit change in X_1 ...holding other covariates constant
- \cdot In this case, holding X_2 constant
- What we can now say:
 - The association between X_1 and Y that β_1 identifies is not due to confounding by X_2

4

New regression model with incumbent data

```
reg2 <- lm(formula = partyincshr ~ gdpchangeyr3 + age,data = economy)
summary(reg2)</pre>
```

```
##
## Call:
## lm(formula = partyincshr ~ gdpchangeyr3 + age, data = economy)
##
## Residuals:
       Min 10 Median
##
                             30
                                        Max
## -13.7772 -3.6559 -0.1206 3.6909 10.6179
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 54.97700 7.56543 7.267 4.65e-09 ***
## gdpchangeyr3 0.63960 0.21801 2.934 0.0053 **
## age -0.08605 0.12965 -0.664 0.5104
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.581 on 44 degrees of freedom
    (184 observations deleted due to missingness)
##
## Multiple R-squared: 0.1664, Adjusted R-squared: 0.1285
```

Comparing our two models

	Model 1	Model 2		
(Intercept)	50.254***	54.977***		
	(0.999)	(7.565)		
GDP change (year 3)	0.605**	0.640**		
	(0.220)	(0.218)		
Age		-0.086		
		(0.130)		
Num.Obs.	48	47		
R2	0.142	0.166		
R2 Adj.	0.123	0.129		
+ n / 0.1 * n / 0.05 ** n / 0.01 *** n / 0.001				

⁺ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Non-linear relationships are not well captured

Linear regression models are good at estimating **linear** relationships

- \cdot When the relationship between X and Y is non-linear, things get more complicated
- · (There are ways to account for this, but that's for 311)
- · In short, our eta's will not capture the relationship well

Airbnb's in London

Figure 1: Longitude and price of London (UK) Airbnb listings on March 4th, 2017

Airbnb's in London

```
##
## Call:
## lm(formula = price ~ longitude. data = london)
##
## Residuals:
## Min 10 Median 30 Max
## -117.52 -49.04 -21.41 22.07 893.80
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 79.2799 0.6018 131.75 <2e-16 ***
## longitude -114.8015 3.8881 -29.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 79.69 on 53815 degrees of freedom
    (60 observations deleted due to missingness)
##
## Multiple R-squared: 0.01594, Adjusted R-squared: 0.01592
## F-statistic: 871.8 on 1 and 53815 DF. p-value: < 2.2e-16
```


	Model 1	Model 2	
(Intercept)	38.201***	56.773***	
	(3.157)	(4.315)	
GDP change since 1989	-7.645***	-23.763***	
	(2.178)	(3.415)	
Num.Obs.	184	181	
R2	0.063	0.213	
R2 Adj.	0.058	0.208	
Ln / 0.1 * n / 0.05 ** n / 0.01 *** n / 0.001			

⁺ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

But generally we should be wary of their influence

Proponents of "transitory" inflation cite rising prices as a global phenomenon. True, but 1) our inflation is much higher than peers and 2) there is, unsurprisingly, a relationship between pandemic fiscal response and prices. cc: @TheEconomist

2:06 PM · Nov 22, 2021 · Sprout Social

But generally we should be wary of their influence

I usually wouldn't comment on a N=8 scatterplot, but this particular example turns out to be very useful pedagogically, illustrating the impact of a single, *high leverage*, observation can have on the fitted regression slope.

Inclusion of US (just 1 data point) flips the sign.

Seems like an important guy...

Steven Rattner <a>Q
@SteveRattner

Former head of Obama Auto Task
Force. Wall Street financier.
Contributing Writer to NY Times Op-Ed.
Morning Joe Economic Analyst.

312 Following **80.2K** Followers

Followed by Neoliberal (4), Elizabeth Saunders, and 58 others you follow

A note on listwise deletion

What happens to your regression when the dataset has missing data?

- Listwise deletion: any observation that is missing at least one value for any independent variable or the dependent variable will be thrown out
- · i.e. the model will not use that observation

Grade (DV)	Happiness	Hours of sleep
87	NA	7
81	8	NA
NA	6	3

Running a model: $\mathrm{Sleep}_i = \beta_0 + \beta_1 \mathrm{Happiness}_i + \beta_2 \mathrm{Sleep}_i + \epsilon_i$

What's wrong here?

Appointing more women to managerial positions improves firms' environmental performance \$#GenderDiversity #ClimateChange #COP26&bis.org/publ/work977.h...

COVID and democracy

```
load("lectures/lecture 13.1/survey.RData")
m1 anxiety <- lm(
  ea_3item ~ anxiety_scale,
  data = survey
reg formula <- ea 3item ~ anxiety scale + birth decade + educ 4cat +
  deprivation_scale + authority_scale_alt + partyid
# Fully-specified model
m2 anxiety <- lm(</pre>
  formula = reg_formula,
  data = survey
```

Covid and democracy

	Model 1	Model 2
COVID-related anxiety	0.243 (0.014)***	0.166 (0.017)***
Born in the 1950s		-0.017 (0.015)
Born in the 1960s		0.004 (0.016)
Born in the 1970s		0.050 (0.016)**
Born in the 1980s		0.085 (0.016)***
Born since 1990		0.071 (0.015)***
Deprivation		0.090 (0.016)***
Authoritarianism		0.055 (0.009)***
Completed high school		-0.010 (0.015)
Some postsecondary		-0.034 (0.016)*
College graduate		-0.035 (0.016)*
Conservative partisan		-0.079 (0.010)***
NDP partisan		-0.043 (0.013)***
Green partisan		-0.009 (0.019)
Non-partisan		-0.035 (0.015)*
Constant	0.255 (0.006)***	0.242 (0.019)***
Num.Obs.	2417	2177
R2	0.114	0.206

Big takeaways

- Empirical research is hard!
 - · People who spend their lives doing this get it wrong all the time
 - · The first step: recognize how hard this is
- · Match the strength of your claims to the strength of your evidence
 - · Recognize uncertainty
 - When reading about politics in popular media, notice how people don't do that
- Think about the sort of evidence that would make you change your mind
 - · If the answer is none.....

How can I use this?

To learn more...

- · POLI311: Quantitative methods
- · POLI313: Qualitative methods
- Other than course work: find data that you like!

To apply what we've learned...

- · In popular media:
 - · How strong are the claims being made
 - How strong is the evidence that is being presented?
 - Sometimes, there is no empirical evidence; there are entire news articles based on the intuition of "some dude"
- · In academics:
 - · When reading empirical research
 - When reading non-empirical research: what would a good empirical test look like?

References